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A possible type of structural damping in mechanical systems when there is a distinct dependence of the oscillation decrement 
on the amplitude is investigated, using the example of the solution of a model problem on the oscillations of a two-layer beam, 
It is assumed that layer slip only occurs along the beam axis and that the layers move together in the transverse direction. The 
interaction between the layers is of an elastic-friction form. The equations of motion of the beam in Timoshenko’s form are 
numerically integrated using Godunov’s difference scheme. 0 2001 Elsevier Science Ltd. All rights reserved. 

The oscillations of a two-layer cantilever beam under transverse flexure were investigated in one of 
the first papers on structural damping [l, 21. The problem was solved in a quasistatic formulation 
for the case when a dry friction force, which obeys the Amonton-Coulomb law, acts between the 
layers. 

It is assumed in this paper that the friction forces are associated with a total damping force of the 
relative slip of the contact surfaces. This approach enables us to describe structural damping when there 
is a distinct dependence of the oscillation decrement on the amplitude. The free oscillations of a beam, 
including a beam in which the layers are made of different materials, and the slip of the surfaces at the 
wave stage of the transients are considered. 

1. FORMULATION OF THE PROBLEM 

When account is taken of the shear and the rotation inertia of the sections, the motion of the ith layer 
of the beam is described by the system of equations 

aNj iax = piqaui fat -(-l)‘q, aNi fat = EiF;aUi iax 

aQi 1 ax = pieay. fat, aQ, lat = k,GiI$(aWlax-@i) (1.1) 
aMi l ax = pi Jia@, l at - Qi + qhi 12, aMi I at = E, Jia<Pi I ax, i = 1.2 

where Nip Q, Mi are the longitudinal force, the shearing force and the bending moment, Vi, Wi, @i are 
the longitudinal, transverse and angular velocities of the sections, EiCi are the tensile and shear moduli 
of elasticity, Fi, Ji, hi, k, are the area, moment of inertia, height and form factor of the cross-section, pi 
is the density, q is the interaction force per unit length between the layers, t is the time and x is the 
axial coordinate. 

In Eqs (1.1) we have taken into account the fact that layer slip occurs only along the beam axis and 
that the layers move together in the transverse direction. 

We introduce dimensionless parameters using the relations 

Ni = E&N,:, Qi = EoFoQi”, Mi = EoFoAoM,~. Ui = CoU,” 

w=c,w”, pi =c~~~IA,. Ei = EOE,~, Gi = E,G,~, pi =popp 

4 = f$,e’, Ji = F,2J;, hi = A&, x = A&‘, t= A,,f’/cO 

q = E,A,q’, A; = F,, co’ = E. Ip, 

(1.2) 

Dimensionless parameters are labelled with the degree superscript and the dimensional quantities used 
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in the normalization are labelled with a zero subscript. For brevity, the degree superscript will henceforth 
be omitted. The equations for the dimensionless parameters are identical to (1.1) 

The interaction between the layers has an elastic-friction form 

q=ylsignV+&V, V#O 

q=qb+&, v=o 

(1.3) 

where v and Vare the relative displacement of the contacting surfaces and its rate and qb is the friction 
force corresponding to complete damping of the relative slip of the surfaces. 

We shall assume that the quantity w is related to the stress &, by the power relation 

w = Y k?bt* (1.4) 

Relation (1.4) conforms with the power relation between the oscillation decrement and the amplitude, 
which is characteristic of structural damping and, in the special case when cx = 0, the Amonton- 
Coulomb law of dry friction follows from it. 

2. SOLUTION 

The dynamic processes in the beam were modelled numerically using Godunov’s difference scheme 
[3]. The computational relations for the section of the bar between the cross-sections x = x,-r and 
x = x, have the form 

N,: = Niva + EiF;<Ui,, - Ui,n_l )Atf b 

M,~ = Mi,t + EiJi(~i,, - (Pi.,-1 )A’/ b . 

W* = W. + (Q,., + Q2.n -Q,,,_, -Q,.,-,)‘(P,F, +P2F2) 

Q,! =(b,p,J; -b~k,Gif$At)/b~, @y =Ai -B;q*, ur’ =C, -D;S’ 

bl = Qi,, + k,GiFi( W, - W,_, )A’/~ 

b2 = pi Ji@i.* + (Mi,n - Mi,n-1 )Atlhx, bj =p,Ji +k.yGif$At2 

b4 =b,-h,Atq*/Z, A;=(b2+b,At)lb,, Bi=hiAt/(2bJ) 

C, = ui.z+ + (Ni.n -Ni.n_l)At/(piF;h), Di =(-I)‘-‘Atl(pi~)~ i=1,2 

(2.1) 

Here i is the number of the layer, the mean integral values of the parameters within the section at 
t and t + At are labelled with an asterisk subscript and an asterisk superscript respectively, the subscripts 
tz and IZ - 1 refer to quantities which are mean integral quantities within the limits of At for the cross- 
sectionsx, andx,_l, At is the time step and Ax is the step along the coordinate. 

The total damping force of the relative slip of the layers is given by the formula 

q; =[C, -C, +(h,A, +h2A2)12]/[D, -4 +(h,B, +&B2)/2] (2.2) 

To calculate the parameters at the sidesx, andx,,_, of a cell of the difference mesh, we use the relations 
on the characteristics 

Ni.n -(jc,,iP;I;r:),-j/2ui,n =(Ni_jc,.;Pi~U;),-jt2 

Q,,, -&;P;e),,-j,2Wn =CQ; -.k,iPi6W),-j/2 

Mi,n -(j~,.;~iJi),-j,~~i., =(Mi-jc,.iPiJi~i),-j/z 

clTi = Ei ipit C22,i=k,GilPi, j=l, -I 

(2.3) 

where j is the direction cosine of the outer normal to the end of an element of the beam. 
At the ends of the beam, one of the quantities occurring in the pairs @Vi,*, U,,,), (Q,,,, IV,) and (Mj,n, 

ai?) is specified and the other is determined using relations (2.3). 
For each time step, a calculation is initially carried out which takes no account of the friction forces, 

and the quantity sign V, which is used in the subsequent calculation, is determined since the friction 
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forces can only damp the relative motion of the layers but cannot change its direction. In addition, C$ 
is calculated. Equality (2.2) reflects the fact that the momentum of the load qi in a step At is sufficient 
for complete damping of the relative slip of the layers which would be observed at the end of the step 
if there were no dissipative forces during At. The interaction force between the layers and the other 
parameters of the dynamical process are then determined using (1.3) and (1.4). If it turns out that the 
rate of relative displacement of the layers nevertheless changes direction compared with the elastic 
solution, it is assumed that I/ = 0 and the parameters of the’process are recalculated for a friction force 
equal to qi. 

The use of simplified relations, which do not contain terms of the order of AC, for the characteristics and the 
referral of the non-divergent terms in (2.1) to the moment t + At increases the margin of stability of the difference 
scheme. Moreover, a scheme constructed in this manner is only of the first order of approximation. The Runge 
method [4] was used to increase the order of the approximation to second order. Accordingly, the calculation results 
were refined using the formula 

R = ZR(Ax) - R(2Ar) (2.4) 

where R(Ax), R(2Ax) are the values of the parameter R obtained for a single and a double step of the mesh. 
The step procedure in [5], which enables one to maintain the Courant numbers equal to unity for all wave systems, 

was also used to increase the accuracy of the description of the wave phase of the motion and to reduce the mesh 
viscosity. 

This approach and the use of a step size Ax = 0.0025 enabled us to ensure a fairly low level of mesh viscosity 
with an acceptable demand on computational resources. Control calculations showed that the decrement, associated 
with the effects of mesh viscosity, did not exceed 1 x 10m4. 

3. RESULTS OF NUMERICAL CALCULATIONS 

The free oscillations of a cantilever beam, damaged in the cross-section x = 8, in the case of purely 
friction interaction between the layers (5 = 0) were initially investigated. The calculations were carried 
out for a beam consisting of two identical layers hi = h, Ei = 1, pi = 1. Henceforth, it is assumed 
everywhere that k, = 5/6, the width of the section b = 1 and Poisson’s ratio is equal to 0.3. A 
constant shearing force, which acted during a quarter of a period of the fundamental tone of the 
transverse oscillations was instantaneously applied to each layer at the end x = 0 and then removed. 
The logarithmic decrement of the oscillations 6 was determined using the first ten amplitudes of the 
oscillations. 

The numerical experiment showed that, in the given case, expression (1.4) can be specified in the 
following way 

(3.1) 

Here, Q, is the actual amplitude of the shearing force in the cross-section of the beam being considered. 
It is obvious that Q, = kfkd, where kf is a coefficient which depends on the oscillations mode and kd 

is the actual value of the dynamical coefficient. Using the fact that kd = 1 w,Iw, 1, where w, is the 
amplitude of the deflection at the end of the cantilever and w, is the maximum deflection under static 
loading, we obtain 

l-a 

, k = k,k;-a (3.2) 

It follows from (3.2) that the relations 

6 = oka-’ 
d * a=ph/k=const (3.3) 

are satisfied for a fixed value of p in the free oscillation process. 
We will now consider the most typical values of CL The case when CI = 0 corresponds to conventional 

dry friction, for which the oscillations decrement, as is well known, is inversely proportional to the 
amplitude. In fact, this dependence also follows from relations (3.3). The change in the deflection w 
at the end of the beam when a = 0 is shown on the left in Fig. 1. The linear attenuation of the amplitude, 
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Fig. 1 

which is characteristic of dry friction, can be seen. When p = 0.25 and t > 1500, complete cohesion of 
the contacting surfaces occurs and non-decaying oscillations with an increased frequency are observed. 

When a =l, there is damping for which the decrement is independent of the amplitude. The right- 
hand side of Fig. 1 corresponds to p = 1. The reduction in the amplitude when a = 1 obeys the usual 
exponential law, and cohesion of the layers is not observed. 

Finally, if a = 2, it is found that the logarithmic decrement of the oscillations, according to (3.3), is 
directly proportional to the amplitude. As is shown on the right-hand side of Fig. 1, the decrease in the 
amplitude at small values of the amplitude is retarded compared with an exponential law, which is 
indicative of a reduction in the decrement as the amplitude falls. 

The change in the parameter a as a function of p for various values of a is shown in Fig. 2. The static 
deflection at the end of the cantilever when there is no coupling between the layers (0 = 0) was taken 
as w,. Over the range under consideration, the magnitude of a depends linearly on p for any a. The 
dashed line corresponds to the results obtained from a quasistatic solution for a symmetric loading cycle 
[l, 21 where, naturally, it was assumed that w, = w,. 

An investigation of the free oscillations of a beam, the layers of which differ in their mechanical 
properties, showed that a reduction in the velocity of sound in one of the layers will lead to a reduction 
in the oscillations decrement. For example, when a = 1 and 0 = 0.3, the decrement 6 = 0.26 for identical 
layers. If cl.2 = O.~C,,~ then 6 = 0.20, and if C!,J - - 0.25c,,, then 6 = 0.12 for the same values of a and 
0. It is interesting to note that the result obtained is the same regardless of which characteristic of the 
material, the modulus of elasticity or the density, changes the velocity of sound. 

It has been shown previously in a quasistatic formulation that the efficiency of damping coatings 
decreases when their modulus of elasticity decreases [6, 71. The results presented here enable one to 
ascertain more precisely that it is the velocity of sound in a layer, rather than its modulus of elasticity 
which is the decisive factor. 

0 0.25 0.50 P 

Fig. 2 
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Fig. 3 

When c1 = 2, similar changes are observed for the parameter a which, in this case, is equal to 6/k,. 
When p = 0.6 and the layers have identical properties, a = 0.27. When cl,2 = 0.5ci,i, other conditions 
being equal, a = 0.16, and, if ci2 = 0.25c1,i, then a = 0.06. 

When, apart from friction forces, there are also elastic forces of interaction between the layers, this 
also leads to a reduction in the attenuation of the oscillations. When a = 1 and p = 0.3, then, already 
when 5 = 0.01, the decrement is reduced by a factor of 3.4 and takes the value 0.07. If a = 2, a similar 
reduction is observed in the case of the quantity a which, for the same amplitude, is also equivalent to 
a decrease in the decrement. 

It was assumed in the quasistatic problem that slip begins simultaneously over the whole length of 
the beam and in a single direction [l, 21. However, investigation of the transient wave processes shows 
that slip, at least at the initial wave stage, occurs in a different way. The relative slip rate of the layers 
of a semi-infinite beam with the same geometrical and mechanical characteristics: hi = 1, Ej = 1, 
pi = 1 is shown in Fig. 3 fort = 10. When a = 0 and p = 0.6, the travelling domain of cohesion in the 
middle part of the beam is observable (curve 1). Moreover, there is no slip ahead of the shear wave 
front. There are no such cohesion zones when a = 1 and a = 2. Curve 2 corresponds to the slip rate 
distribution for a = 2 and l3 = 50. Note that the slip rate has a different direction in different parts of 
the beam. 

The results show that the introduction of a functional and, in particular, a power relation between 
the friction forces and the overall damping force is an effective method for taking account of the real 
dependence of structural damping on the amplitude, which is suitable for describing both oscillations 
and wave processes. 
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